Semantics Engineering
Theory of programming languages
Calculus is a logic for calculating with the terms of the language. For example,
e = x | λ x.e | (e e)
Extensions with primitive data:
e = x | λ x.e | (e e) | tt | ff | (if e e e)
External interpretation functions (δ):
(if tt e e') if-tt e
(if ff e e') if-ff e'
Semantics is a system for determining the value of a program.
Reduction is a relation on terms:
((λ x.e) e') beta e[x = x'] (e with x replaced by e')
((λ x.e) e') beta [e'/x]e (substitution e' for x in e)
Equational system is defined with three properties:
For any relation R,
reflexivity: if e R e'
, then e e'' R e' e''
symmetry: if e R e'
, then e'' e R e'' e'
transitivity: if e R e'
, then λ x.e R λ x.e'
With an equational system, we can prove such facts as
e (Y e) = (Y e)
meaning every single term has a fixpoint.
In Plotkin’s theory of programming languages, a semantic is a relation eval from programs to values:
eval : Program ✕ Value
def e eval v iff e = v
We get a specification of an interpreter after proving that eval is a function.
eval : Program → Value
eval(e) = v
Prove that the calculus satisfies a standard reduction property. This gives us a second semantic.
eval-standard : Program → Value
def eval-standard(e) = v iff e standard reduces to v
Curry-Feys’s standard reduction is a strategy for the lambda calculus, that is, a function that picks the next reducible expression (called redex) to reduce. Plotkin specifically uses the leftmost-outermost strategy.
Plotkin adds the truth to the specification.
def e ~ e' iff placing e and e' into any context yields programs that
produce the same observable behavior according to eval
Redex
Redex is a scripting language and set of associated tools supporting the conception, design, construction, and testing of semantic systems such as programming languages, type systems, program logics, and program analyses. As a scripting language, it enables an engineer to create executable specifications of common semantic elements such as grammars, reduction relations, judgments, and metafunctions; the basic elements of formal systems.
Syntax
; syntax trees
(define-language Lambda
(e ::= x
(lambda (x ...) e)
(e e ...))
(x ::= variable-not-otherwise-mentioned))
; instances
(define e1 (term y))
(define e2 (term (lambda (y) y)))
(define e3 (term (lambda (x y) y)))
(define e4 (term (,e2 ,e3)))
; a predicate that tests membership
(define lambda? (redex-match? Lambda e))
; language tests formulations
(test-equal (lambda? e1) #true)
(test-equal (lambda? e2) #true)
(test-equal (lambda? e3) #true)
(test-equal (lambda? e4) #true)
(define eb1 (term (lambda (x x) y)))
(define eb2 (term (lambda (x y) 3)))
(test-equal (lambda? eb1) #true)
(test-equal (lambda? eb2) #false)
Metafunction
A metafunction is a function on terms of a specific language.
; are the identifiers in the given sequence unique?
; extended Kleene patterns: (lambda (x_!_ ...) e)
(module+ test
(test-equal (term (unique-vars x y)) #true)
(test-equal (term (unique-vars x y x)) #false))
(define-metafunction Lambda
; a Redex contract with patterns
unique-vars : x ... -> boolean
[(unique-vars) #true]
[(unique-vars x x_1 ... x x_2 ...) #false]
[(unique-vars x x_1 ...) (unique-vars x_1 ...)])
(module+ test
(test-results))
; (subtract (x ...) x_1 ...) removes x_1 ... from (x ...)
(module+ test
(test-equal (term (subtract (x y z x) x z)) (term (y))))
(define-metafunction Lambda
subtract : (x ...) x ... -> (x ...)
[(subtract (x ...)) (x ...)]
[(subtract (x ...) x_1 x_2 ...)
(subtract (subtract1 (x ...) x_1) x_2 ...)])
(module+ test
(test-results))
; (subtract1 (x ...) x_1) removes x_1 from (x ...)
(module+ test
(test-equal (term (subtract1 (x y z x) x)) (term (y z))))
(define-metafunction Lambda
subtract1 : (x ...) x -> (x ...)
[(subtract1 (x_1 ... x x_2 ...) x)
(x_1 ... x_2new ...)
(where (x_2new ...) (subtract1 (x_2 ...) x))
(where #false (in x (x_1 ...)))]
[(subtract1 (x ...) x_1) (x ...)])
(define-metafunction Lambda
in : x (x ...) -> boolean
[(in x (x_1 ... x x_2 ...)) #true]
[(in x (x_1 ...)) #false])
(module+ test
(test-results))
Scope
To specify the scope, a free-variables function specifies which language constructs bind and which one don’t.
; (fv e) computes the sequence of free variables of e
; a variable occurrence of x is free in e
; if no (lambda (... x ...) ...) dominates its occurrence
(module+ test
(test-equal (term (fv x)) (term (x)))
(test-equal (term (fv (lambda (x) x))) (term ()))
(test-equal (term (fv (lambda (x) (y z x)))) (term (y z))))
(define-metafunction Lambda
fv : e -> (x ...)
[(fv x) (x)]
[(fv (lambda (x ...) e))
(subtract (x_e ...) x ...)
(where (x_e ...) (fv e))]
[(fv (e_f e_a ...))
(x_f ... x_a ... ...)
(where (x_f ...) (fv e_f))
(where ((x_a ...) ...) ((fv e_a) ...))])
α equivalence is a realtion that virtually eliminates variables from phrases and replaces them with arrows to their declarations. In lambda calculus-based languages, this transformation is often a part of the compiler, called the static-distance phase.
; (sd e) computes the static distance version of e
(define-extended-language SD Lambda
(e ::= ....
(K n n)
n)
(n ::= natural))
(define sd1 (term (K 1 1)))
(define sd2 (term 1))
(define SD? (redex-match? SD e))
(module+ test
(test-equal (SD? sd1) #true)
(test-equal (SD? sd2) #true))
(define-metafunction SD
sd : e -> e
[(sd e_1) (sd/a e_1 ())])
(module+ test
(test-equal (term (sd/a x ())) (term x))
(test-equal (term (sd/a x ((y) (z) (x)))) (term (K 2 0)))
(test-equal (term (sd/a ((lambda (x) x) (lambda (y) y)) ()))
(term ((lambda () (K 0 0)) (lambda () (K 0 0)))))
(test-equal (term (sd/a (lambda (x) (x (lambda (y) y))) ()))
(term (lambda () ((K 0 0) (lambda () (K 0 0))))))
(test-equal (term (sd/a (lambda (z x) (x (lambda (y) z))) ()))
(term (lambda () ((K 0 1) (lambda () (K 1 0)))))))
(define-metafunction SD
sd/a : e ((x ...) ...) -> e
[(sd/a x ((x_1 ...) ... (x_0 ... x x_2 ...) (x_3 ...) ...))
; bound variable
(K n_rib n_pos)
(where n_rib ,(length (term ((x_1 ...) ...))))
(where n_pos ,(length (term (x_0 ...))))
(where #false (in x (x_1 ... ...)))]
[(sd/a (lambda (x ...) e_1) (e_rest ...))
(lambda () (sd/a e_1 ((x ...) e_rest ...)))]
[(sd/a (e_fun e_arg ...) (e_rib ...))
((sd/a e_fun (e_rib ...)) (sd/a e_arg (e_rib ...)) ...)]
[(sd/a e_1 any)
; a free variable is left alone
e_1])
Steps of the last formulation:
(sd/a (lambda (z x) (x (lambda (y) z))) ())
-> (lambda () (sd/a (x (lambda (y) z)) ((z x))))
-> (lambda () ((sd/a x ((z x))) (sd/a (lambda (y) z) ((z x)))))
-> (lambda () ((K 0 1) (lambda () (sd/a z ((y) (z x))))))
-> (lambda () ((K 0 1) (lambda () (K 1 0))))
α equivalence:
; (=α e_1 e_2) determines whether e_1 and e_2 are α equivalent
(module+ test
(test-equal (term (=α (lambda (x) x) (lambda (y) y))) #true)
(test-equal (term (=α (lambda (x) (x 1)) (lambda (y) (y 1)))) #true)
(test-equal (term (=α (lambda (x) x) (lambda (y) z))) #false))
(define-metafunction SD
=α : e e -> boolean
[(=α e_1 e_2) ,(equal? (term (sd e_1)) (term (sd e_2)))])
(define (=α/racket x y) (term (=α ,x ,y)))
(module+ test
(test-results))
Substitution
Substitution is the syntactic equivalent of function application.
; (subst ([e x] ...) e_*) substitutes e ... for x ... in e_* (hygienically)
(module+ test
(test-equal (term (subst ([1 x][2 y]) x)) 1)
(test-equal (term (subst ([1 x][2 y]) y)) 2)
(test-equal (term (subst ([1 x][2 y]) z)) (term z))
(test-equal (term (subst ([1 x][2 y]) (lambda (z w) (x y))))
(term (lambda (z w) (1 2))))
(test-equal (term (subst ([1 x][2 y]) (lambda (z w) (lambda (x) (x y)))))
(term (lambda (z w) (lambda (x) (x 2))))
#:equiv =α/racket)
(test-equal (term (subst ((2 x)) ((lambda (x) (1 x)) x)))
(term ((lambda (x) (1 x)) 2))
#:equiv =α/racket))
(define-metafunction Lambda
subst : ((any x) ...) any -> any
[(subst [(any_1 x_1) ... (any_x x) (any_2 x_2) ...] x) any_x]
[(subst [(any_1 x_1) ...] x) x]
[(subst [(any_1 x_1) ...] (lambda (x ...) any_body))
(lambda (x_new ...)
(subst ((any_1 x_1) ...)
(subst-raw ((x_new x) ...) any_body)))
(where (x_new ...) ,(variables-not-in (term any_body) (term (x ...))))]
[(subst [(any_1 x_1) ...] (any ...)) ((subst [(any_1 x_1) ...] any) ...)]
[(subst [(any_1 x_1) ...] any_*) any_*])
(define-metafunction Lambda
subst-raw : ((x x) ...) any -> any
[(subst-raw ((x_n1 x_o1) ... (x_new x) (x_n2 x_o2) ...) x) x_new]
[(subst-raw ((x_n1 x_o1) ...) x) x]
[(subst-raw ((x_n1 x_o1) ...) (lambda (x ...) any))
(lambda (x ...) (subst-raw ((x_n1 x_o1) ...) any))]
[(subst-raw [(any_1 x_1) ...] (any ...))
((subst-raw [(any_1 x_1) ...] any) ...)]
[(subst-raw [(any_1 x_1) ...] any_*) any_*])
(module+ test
(test-results))
Reduction and semantics
The logical way of generating an equivalence (or reduction) relation over terms uses through inductive inference rules that make the relation compatible with all syntactic constructions.
An alternative and equivalent method is to introduce the notion of a context and to use it to generate the reduction relation (or equivalence) from the notion of reduction:
(define-extended-language Lambda-calculus Lambda
(e ::= .... n)
(n ::= natural)
(v ::= (lambda (x ...) e))
; a context is an expression with one hole in lieu of a sub-expression
(C ::=
hole
(e ... C e ...)
(lambda (x_!_ ...) C)))
(define Context? (redex-match? Lambda-calculus C))
(module+ test
(define C1 (term ((lambda (x y) x) hole 1)))
(define C2 (term ((lambda (x y) hole) 0 1)))
(test-equal (Context? C1) #true)
(test-equal (Context? C2) #true))
(module+ test
(test-results))
Reduction relations:
; the λβ calculus, reductions only
(module+ test
; does the one-step reduction reduce both β redexes?
(test--> -->β
#:equiv =α/racket
(term ((lambda (x) ((lambda (y) y) x)) z))
(term ((lambda (x) x) z))
(term ((lambda (y) y) z)))
; does the full reduction relation reduce all redexes?
(test-->> -->β
(term ((lambda (x y) (x 1 y 2))
(lambda (a b c) a)
3))
1))
(define -->β
(reduction-relation
Lambda-calculus
(--> (in-hole C ((lambda (x_1 ..._n) e) e_1 ..._n))
(in-hole C (subst ([e_1 x_1] ...) e)))))
(traces -->β
(term ((lambda (x y)
((lambda (f) (f (x 1 y 2)))
(lambda (w) 42)))
((lambda (x) x) (lambda (a b c) a))
3)))
Defining the call-by-value calculus requires just a small change to the reduction rule:
(define -->βv
(reduction-relation
Lambda-calculus
(--> (in-hole C ((lambda (x_1 ..._n) e) v_1 ..._n))
(in-hole C (subst ([v_1 x_1] ...) e)))))
(traces -->βv
(term ((lambda (x y)
((lambda (f) (f (x 1 y 2)))
(lambda (w) 42)))
((lambda (x) x) (lambda (a b c) a))
3)))
Semantics:
(define-extended-language Standard Lambda-calculus
(v ::= n (lambda (x ...) e))
(E ::=
hole
(v ... E e ...)))
(module+ test
(define t0
(term
((lambda (x y) (x y))
((lambda (x) x) (lambda (x) x))
((lambda (x) x) 5))))
(define t0-one-step
(term
((lambda (x y) (x y))
(lambda (x) x)
((lambda (x) x) 5))))
; yields only one term, leftmost-outermost
(test--> s->βv t0 t0-one-step)
; but the transitive closure drives it to 5
(test-->> s->βv t0 5))
(define s->βv
(reduction-relation
Standard
(--> (in-hole E ((lambda (x_1 ..._n) e) v_1 ..._n))
(in-hole E (subst ((v_1 x_1) ...) e)))))
(module+ test
(test-results))
(module+ test
(test-equal (term (eval-value ,t0)) 5)
(test-equal (term (eval-value ,t0-one-step)) 5)
(define t1
(term ((lambda (x) x) (lambda (x) x))))
(test-equal (lambda? t1) #true)
(test-equal (redex-match? Standard e t1) #true)
(test-equal (term (eval-value ,t1)) 'closure))
(define-metafunction Standard
eval-value : e -> v or closure
[(eval-value e) any_1 (where any_1 (run-value e))])
(define-metafunction Standard
run-value : e -> v or closure
[(run-value n) n]
[(run-value v) closure]
[(run-value e)
(run-value e_again)
; (v) means that we expect s->βv to be a function
(where (e_again) ,(apply-reduction-relation s->βv (term e)))])
(module+ test
(test-results))
References
[1] Robert Bruce Findler, Casey Klein, Burke Fetscher, and Matthias Felleisen. (2015) Redex: Practical Semantics Engineering, https://docs.racket-lang.org/redex/index.html.